资源类型

期刊论文 161

会议信息 1

年份

2023 8

2022 7

2021 15

2020 8

2019 8

2018 5

2017 6

2016 6

2015 7

2014 6

2013 5

2012 9

2011 6

2010 7

2009 7

2008 12

2007 13

2006 8

2005 5

2004 5

展开 ︾

关键词

超光速 3

临界风速 2

快子 2

消失波 2

300 M钢 1

ADV 1

Chebyshev多项式 1

EFP 1

GH位移 1

Hilare 机器人 1

LMS 1

Maxwell方程组 1

PIV 1

PTCNN 1

Proca方程组 1

WC涂层 1

Z箍缩 1

三维含孔洞结构 1

上举力 1

展开 ︾

检索范围:

排序: 展示方式:

Experimental investigation on mechanical properties of binary and ternary blended pervious concrete

Rekha SINGH, Sanjay GOEL

《结构与土木工程前沿(英文)》 2020年 第14卷 第1期   页码 229-240 doi: 10.1007/s11709-019-0597-4

摘要: The purpose of the investigation was to study the effect of binary and ternary blends of cement on the mechanical properties of pervious concrete (PC) specimen through destructive (DT) and non-destructive testing (NDT). Various combinations of fly ash (FA), limestone powder (LP), metakaolin (MK), and silica fume (SF) as mineral admixtures have been investigated to partially replace the cement up to 30% by weight in PC. Standard cube specimens of size 150 mm × 150 mm × 150 mm of binary and ternary blends of mineral admixture of pervious concrete were prepared to conduct standard compressive strength test and split tensile test at 7 and 28 days of curing. The ultrasonic pulse velocity (UPV) test and Rebound Hammer test were used as a non-destructive testing tool to substantiate the robustness of PC and to determine the approximate mechanical properties where other destructive testing tools are not feasible in case of in-place pervious pavements. Overall the pervious concrete made with LP based ternary blends (PLM and PLS) were found to perform better than FA based ternary blends (PFM and PFS) and control mix (PC) in destructive and non-destructive testing.

关键词: mineral admixture     ternary     compressive strength     split tensile strength     pervious concrete     ultrasonic pulse velocity    

New definition of metabolic dysfunction-associated fatty liver disease with elevated brachial-ankle pulsewave velocity and albuminuria: a prospective cohort study

《医学前沿(英文)》 2022年 第16卷 第5期   页码 714-722 doi: 10.1007/s11684-021-0888-8

摘要: A new definition of metabolic dysfunction-associated fatty liver disease (MAFLD) has recently been proposed. We aim to examine the associations of MAFLD, particularly its discordance from non-alcoholic fatty liver disease (NAFLD), with the progression of elevated brachial-ankle pulse wave velocity (baPWV) and albuminuria in a community-based study sample in Shanghai, China. After 4.3 years of follow-up, 778 participants developed elevated baPWV and 499 developed albuminuria. In comparison with the non-MAFLD group, the multivariable adjusted odds ratio (OR) of MAFLD group for new-onset elevated baPWV was 1.25 (95% confidence interval (CI) 1.01–1.55) and 1.35 (95% CI 1.07–1.70) for albuminuria. Participants without NAFLD but diagnosed according to MAFLD definition were associated with higher risk of incident albuminuria (OR 1.77; 95% CI 1.07–2.94). Patients with MAFLD with high value of hepamet fibrosis score or poor-controlled diabetes had higher risk of elevated baPWV or albuminuria. In conclusion, MAFLD was associated with new-onset elevated baPWV and albuminuria independently of body mass index, waist circumference, and hip circumference. Individuals without NAFLD but diagnosed as MAFLD had high risk of albuminuria, supporting that MAFLD criteria would be practical for the evaluation of long-term risk of subclinical atherosclerosis among fatty liver patients.

关键词: metabolic dysfunction-associated fatty liver disease     non-alcoholic fatty liver disease     fibrosis score     brachial-ankle pulse wave velocity     albuminuria    

Analysis and control of micro-stepping characteristics of ultrasonic motor

Ning CHEN, Jieji ZHENG, Xianliang JIANG, Shixun FAN, Dapeng FAN

《机械工程前沿(英文)》 2020年 第15卷 第4期   页码 585-599 doi: 10.1007/s11465-019-0577-3

摘要: Micro-stepping motion of ultrasonic motors satisfies biomedical applications, such as cell operation and nuclear magnetic resonance, which require a precise compact-structure non-magnetization positioning device. When the pulse number is relatively small, the stopping characteristics have a non-negligible effect on the entire stepwise process. However, few studies have been conducted to show the rule of the open-loop stepwise motion, especially the shutdown stage. In this study, the modal differences of the shutdown stage are found connected with amplitude and velocity at the turn-off instant. Changes of the length in the contact area and driving zone as well as the input currents, vibration states, output torque, and axial pressure are derived by a simulation model to further explore the rules. The speed curves and vibration results in functions of different pulse numbers are compared, and the stepwise motion can be described by a two-stage two-order transfer function. A test workbench based on the Field Programmable Gate Array is built for acquiring the speed, currents, and feedback voltages of the startup–shutdown stage accurately with the help of its excellent synchronization performances. Therefore, stator vibration, rotor velocity, and terminal displacements under different pulse numbers can be compared. Moreover, the two-stage two-order model is identified on the stepwise speed curves, and the fitness over 85% between the simulation and test verifies the model availability. Finally, with the optimization of the pulse number, the motor achieves 3.3 µrad in clockwise and counterclockwise direction.

关键词: ultrasonic motor     stepping characteristics     pulse number control     synchronous acquisition system     precise positioning    

Esophageal pulse oximetry is more accurate and detects hypoxemia earlier than conventional pulse oximetry

null

《医学前沿(英文)》 2012年 第6卷 第4期   页码 406-410 doi: 10.1007/s11684-012-0217-3

摘要:

The esophagus is perfused directly by prominent arteries and may provide a more consistent tissue source for pulse oximetry. The goal of this study was to evaluate the sensitivity and accuracy of an esophageal pulse oximetry probe on patients during controlled hypoxemia in comparison to measurements obtained with conventional pulse oximetry (SpulseO2). Forty-five ASA I–II adult patients were included in this prospective observational study. Nellcor digital oximetric probes were placed on finger tips for SpulseO2 before anesthesia. After tracheal intubation, an esophageal probe was placed in the lower segment of the esophagus for esophageal oximetric monitoring (SoesO2). All patients were disconnected from the breathing circuit to establish a controlled hypoxemia, and were re-connected to the breathing circuit and ventilated with 100% oxygen immediately when SoesO2 dropped to 90%. Matched SoesO2 and SpulseO2 readings were recorded when SoesO2measurements were at 100%, 95%, 90% and the lowest reading. The time for SoesO2 and SpulseO2 to drop from 100% to 95%, 90% and return to 100% was recorded. Oxygen saturation from arterial blood samples (SartO2) was also measured at each time point respectively. The linear correlation coefficient of the regression analysis between SartO2 and SoesO2 was 0.954. The mean±2SD of the difference was 0.3%±4.3% for SoesO2vs. SartO2 and 6.8%±5.6% for SpulseO2vs. SartO2 (P<0.001). The 95% confidence interval for the absolute difference between SoesO2 and SartO2 was 0.3% to 0.7% and 6.2% to 7.4% between SpulseO2 and SartO2. The time to reach 90% saturation measured with SoesO2 was approximately 94 seconds earlier than the SpulseO2 (P<0.001). In conclusion, SoesO2 is more accurate and enables earlier detection of hypoxemia when compared to conventional pulse oximetry during hypoxemia for patients undergoing general anesthesia.

关键词: esophageal pulse oximetry     conventional pulse oximetry     hypoxemia    

density measurement for plastic injection molding via ultrasonic technology

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0714-2

摘要: Density variation during the injection molding process directly reflects the state of plastic melt and contains valuable information for process monitoring and optimization. Therefore, in-situ density measurement is of great interest and has significant application value. The existing methods, such as pressure−volume−temperature (PVT) method, have the shortages of time-delay and high cost of sensors. This study is the first to propose an in-situ density measurement method using ultrasonic technology. The analyses of the time-domain and frequency-domain signals are combined in the proposed method. The ultrasonic velocity is obtained from the time-domain signals, and the acoustic impedance is computed through a full-spectral analysis of the frequency-domain signals. Experiments with different process conditions are conducted, including different melt temperature, injection speed, material, and mold structure. Results show that the proposed method has good agreement with the PVT method. The proposed method has the advantages of in-situ measurement, non-destructive, high accuracy, low cost, and is of great application value for the injection molding industry.

关键词: ultrasonic measurement     melt density     in-situ measurement     injection molding    

Linear ultrasonic motor using quadrate plate transducer

Jiamei JIN, Chunsheng ZHAO

《机械工程前沿(英文)》 2009年 第4卷 第1期   页码 88-91 doi: 10.1007/s11465-009-0016-y

摘要: A linear ultrasonic motor using a quadrate plate transducer was developed for precision positioning. This motor consists of two pairs of Pb(Zr,Ti)O piezoelectric ceramic elements, which are piezoelectrically excited into the second-bending mode of the motor stator’s neutral surface in two orthogonal directions, on which the tops of four projections move along an elliptical trajectory, which in turn drives a contacted slider into linear motion via frictional forces. The coincident frequency of the stator is easily obtained for its coincident characteristic dimension in two orthogonal directions. The performance characteristics achieved by the motor are: 1) a maximum linear speed of more than 60 mm/s; 2) a stroke of more than150 mm; 3) a driving force of more than 5.0 N; and 4) a response time of about 2 ms.

关键词: ultrasonic motor     quadrate plate     coincident frequency     alternant contact    

Postprocessor development for ultrasonic cutting of honeycomb core curved surface with a straight blade

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0729-8

摘要: When ultrasonically cutting honeycomb core curved parts, the tool face of the straight blade must be along the curved surface’s tangent direction at all times to ensure high-quality machining of the curved surface. However, given that the straight blade is a nonstandard tool, the existing computer-aided manufacturing technology cannot directly realize the above action requirement. To solve this problem, this paper proposed an algorithm for extracting a straight blade real-time tool face vector from a 5-axis milling automatically programmed tool location file, which can realize the tool location point and tool axis vector conversion from the flat end mill to the straight blade. At the same time, for the multi-solution problem of the rotation axis, the dependent axis rotation minimization algorithm was introduced, and the spindle rotation algorithm was proposed for the tool edge orientation problem when the straight blade is used to machine the curved part. Finally, on the basis of the MATLAB platform, the dependent axis rotation minimization algorithm and spindle rotation algorithm were integrated and compiled, and the straight blade ultrasonic cutting honeycomb core postprocessor was then developed. The model of the machine tool and the definition of the straight blade were conducted in the VERICUT simulation software, and the simulation machining of the equivalent entity of the honeycomb core can then be realized. The correctness of the numerical control program generated by the postprocessor was verified by machining and accuracy testing of the two designed features. Observation and analysis of the simulation and experiment indicate that the tool pose is the same under each working condition, and the workpieces obtained by machining also meet the corresponding accuracy requirements. Therefore, the postprocessor developed in this paper can be well adapted to the honeycomb core ultrasonic cutting machine tool and realize high-quality and high-efficient machining of honeycomb core composites.

关键词: honeycomb core     straight blade     ultrasonic cutting     tool pose     postprocessor    

Vibration characteristics and machining performance of a novel perforated ultrasonic vibration platform

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0730-2

摘要: Ultrasonic vibration-assisted grinding (UVAG) is an advanced hybrid process for the precision machining of difficult-to-cut materials. The resonator is a critical part of the UVAG system. Its performance considerably influences the vibration amplitude and resonant frequency. In this work, a novel perforated ultrasonic vibration platform resonator was developed for UVAG. The holes were evenly arranged at the top and side surfaces of the vibration platform to improve the vibration characteristics. A modified apparent elasticity method (AEM) was proposed to reveal the influence of holes on the vibration mode. The performance of the vibration platform was evaluated by the vibration tests and UVAG experiments of particulate-reinforced titanium matrix composites. Results indicate that the reasonable distribution of holes helps improve the resonant frequency and vibration mode. The modified AEM, the finite element method, and the vibration tests show a high degree of consistency for developing the perforated ultrasonic vibration platform with a maximum frequency error of 3%. The employment of ultrasonic vibration reduces the grinding force by 36% at most, thereby decreasing the machined surface defects, such as voids, cracks, and burnout.

关键词: ultrasonic vibration-assisted grinding     perforated ultrasonic vibration platform     vibration characteristics     apparent elasticity method     grinding force     surface integrity    

Design of ultrasonic elliptical vibration cutting system for tungsten heavy alloy

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0715-1

摘要: Nanoscale surface roughness of tungsten heavy alloy components is required in the nuclear industry and precision instruments. In this study, a high-performance ultrasonic elliptical vibration cutting (UEVC) system is developed to solve the precision machining problem of tungsten heavy alloy. A new design method of stepped bending vibration horn based on Timoshenko’s theory is first proposed, and its design process is greatly simplified. The arrangement and working principle of piezoelectric transducers on the ultrasonic vibrator using the fifth resonant mode of bending are analyzed to realize the dual-bending vibration modes. A cutting tool is installed at the end of the ultrasonic vibration unit to output the ultrasonic elliptical vibration locus, which is verified by finite element method. The vibration unit can display different three-degree-of-freedom (3-DOF) UEVC characteristics by adjusting the corresponding position of the unit and workpiece. A dual-channel ultrasonic power supply is developed to excite the ultrasonic vibration unit, which makes the UEVC system present the resonant frequency of 41 kHz and the maximum amplitude of 14.2 μm. Different microtopography and surface roughness are obtained by the cutting experiments of tungsten heavy alloy hemispherical workpiece with the UEVC system, which validates the proposed design’s technical capability and provides optimization basis for further improving the machining quality of the curved surface components of tungsten heavy alloy.

关键词: tungsten heavy alloy     ultrasonic elliptical vibration cutting     Timoshenko’s theory     resonant mode of bending     finite element method    

Improving the performances of ultrasonic motors using intermittent contact scheme

Jiamei JIN, Jianhui ZHANG, Fu QIAN, Zhenfeng PAN,

《机械工程前沿(英文)》 2010年 第5卷 第2期   页码 242-246 doi: 10.1007/s11465-010-0016-y

摘要: Most ultrasonic motors operate in intermittent contact scheme. Their stators drive the rotors (or sliders) when the stators contact the rotors, and the rotors (or sliders) move under an inertia force when the stators and the rotors are separated. The duty cycle of the contact and the “flight” manages motors’ output performance. To obtain a large output force or output velocity, this paper proposes a concept using the alternative work of a multi-stator or the multi-driving end of a single stator. The method can avoid larger noise, poor efficiency, and lifetime of motors. A novel linear ultrasonic motor using the alternative work of the multi-driving end of a single stator was fabricated and investigated experimentally. The traveling speed without load of the slider is 88 mm/s, and the maximum load is 0.32 N.

关键词: ultrasonic motor     intermittent contact     alternative work    

Prediction of the shear wave velocity

Amoroso SARA

《结构与土木工程前沿(英文)》 2014年 第8卷 第1期   页码 83-92 doi: 10.1007/s11709-013-0234-6

摘要: The paper examines the correlations to obtain rough estimates of the shear wave velocity from non-seismic dilatometer tests (DMT) and cone penetration tests (CPT). While the direct measurement of is obviously preferable, these correlations may turn out useful in various circumstances. The experimental results at six international research sites suggest that the DMT predictions of from the parameters (material index), (horizontal stress index), (constrained modulus) are more reliable and consistent than the CPT predictions from (cone resistance), presumably because of the availability, by DMT, of the stress history index .

关键词: horizontal stress index     shear wave velocity     flat dilatometer test     cone penetration test    

Improvement in growth yield of single-walled carbon nanotubes with narrow chirality distribution by pulse

Bin Xu, Toshiro Kaneko, Toshiaki Kato

《化学科学与工程前沿(英文)》 2019年 第13卷 第3期   页码 485-492 doi: 10.1007/s11705-019-1831-2

摘要: A pulse plasma chemical vapor deposition (CVD) technique was developed for improving the growth yield of single-walled carbon nanotubes (SWNTs) with a narrow chirality distribution. The growth yield of the SWNTs could be improved by repetitive short duration pulse plasma CVD, while maintaining the initial narrow chirality distribution. Detailed growth dynamics is discussed based on a systematic investigation by changing the pulse parameters. The growth of SWNTs with a narrow chirality distribution could be controlled by the difference in the nucleation time required using catalysts comprising relatively small or large particles as the key factor. The nucleation can be controlled by adjusting the pulse on/off time ratio and the total processing time.

关键词: single-walled carbon nanotubes     chirality-controlled synthesis     pulse plasma chemical vapor deposition    

Investigation on a cylindrical ultrasonic micromotor

ZHU Hua, CHEN Chao, ZHAO Chunsheng

《机械工程前沿(英文)》 2007年 第2卷 第4期   页码 394-398 doi: 10.1007/s11465-007-0068-9

摘要: The relationship between the arrangement of ceramics and the force coefficient shows that the maximum excitation efficiency will be obtained when the ceramics are placed at the trough of the first bending mode of the stator. Therefore, a cylindrical ultrasonic micromotor with a novel stator is proposed. The prototype motor is 5 mm in diameter, 30 mm in length and 4.2 g in weight. The micromotor operates with the first bending mode at 53 kHz. Its maximum speed is 350 r/min when the drive voltage is 200 V and the stall torque reaches 2.5 mN · m. As this motor is suitable for miniaturization because of its simple structure, another cylindrical ultrasonic micromotor is developed. Piezoelectric ceramic tube is used as its stator. This micromtor is 2 mm in diameter, 7 mm in length and 0.258 g in weight. Its speed reaches 813 r/min when the drive voltage is 60 V at 75 kHz. The operation mechanism, structure and design method of these two motors are introduced.

关键词: coefficient     bending     kHz     suitable     weight    

Machinability of ultrasonic vibration-assisted micro-grinding in biological bone using nanolubricant

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0717-z

摘要: Bone grinding is an essential and vital procedure in most surgical operations. Currently, the insufficient cooling capacity of dry grinding, poor visibility of drip irrigation surgery area, and large grinding force leading to high grinding temperature are the technical bottlenecks of micro-grinding. A new micro-grinding process called ultrasonic vibration-assisted nanoparticle jet mist cooling (U-NJMC) is innovatively proposed to solve the technical problem. It combines the advantages of ultrasonic vibration (UV) and nanoparticle jet mist cooling (NJMC). Notwithstanding, the combined effect of multi parameter collaborative of U-NJMC on cooling has not been investigated. The grinding force, friction coefficient, specific grinding energy, and grinding temperature under dry, drip irrigation, UV, minimum quantity lubrication (MQL), NJMC, and U-NJMC micro-grinding were compared and analyzed. Results showed that the minimum normal grinding force and tangential grinding force of U-NJMC micro-grinding were 1.39 and 0.32 N, which were 75.1% and 82.9% less than those in dry grinding, respectively. The minimum friction coefficient and specific grinding energy were achieved using U-NJMC. Compared with dry, drip, UV, MQL, and NJMC grinding, the friction coefficient of U-NJMC was decreased by 31.3%, 17.0%, 19.0%, 9.8%, and 12.5%, respectively, and the specific grinding energy was decreased by 83.0%, 72.7%, 77.8%, 52.3%, and 64.7%, respectively. Compared with UV or NJMC alone, the grinding temperature of U-NJMC was decreased by 33.5% and 10.0%, respectively. These results showed that U-NJMC provides a novel approach for clinical surgical micro-grinding of biological bone.

关键词: micro-grinding     biological bone     ultrasonic vibration (UV)     nanoparticle jet mist cooling (NJMC)     grinding force     grinding temperature    

A modified pulse charging method for lithium-ion batteries by considering stress evolution, charging

Yanfei ZHAO, Bo LU, Yicheng SONG, Junqian ZHANG

《结构与土木工程前沿(英文)》 2019年 第13卷 第2期   页码 294-302 doi: 10.1007/s11709-018-0460-z

摘要: The stress evolution, total charging time and capacity utilization of pulse charging (PC) method are investigated in this paper. It is found that compared to the conventional constant current (CC) charging method, the PC method can accelerate the charging process but will inevitably cause an increase in stress and a decrease in capacity. The charging speed for PC method can be estimated by the mean current. By introducing stress control, a modified PC method called the PCCC method, which starts with a PC operation followed by a CC operation, is proposed. The PCCC method not only can accelerate charging process but also can avoid the stress raising and capacity loss occurring in the PC method. Furthermore, the optimal pulsed current density and switch time in the PCCC method is also discussed.

关键词: fast charging method     pulse charging     stress evolution     charging time     capacity utilization    

标题 作者 时间 类型 操作

Experimental investigation on mechanical properties of binary and ternary blended pervious concrete

Rekha SINGH, Sanjay GOEL

期刊论文

New definition of metabolic dysfunction-associated fatty liver disease with elevated brachial-ankle pulsewave velocity and albuminuria: a prospective cohort study

期刊论文

Analysis and control of micro-stepping characteristics of ultrasonic motor

Ning CHEN, Jieji ZHENG, Xianliang JIANG, Shixun FAN, Dapeng FAN

期刊论文

Esophageal pulse oximetry is more accurate and detects hypoxemia earlier than conventional pulse oximetry

null

期刊论文

density measurement for plastic injection molding via ultrasonic technology

期刊论文

Linear ultrasonic motor using quadrate plate transducer

Jiamei JIN, Chunsheng ZHAO

期刊论文

Postprocessor development for ultrasonic cutting of honeycomb core curved surface with a straight blade

期刊论文

Vibration characteristics and machining performance of a novel perforated ultrasonic vibration platform

期刊论文

Design of ultrasonic elliptical vibration cutting system for tungsten heavy alloy

期刊论文

Improving the performances of ultrasonic motors using intermittent contact scheme

Jiamei JIN, Jianhui ZHANG, Fu QIAN, Zhenfeng PAN,

期刊论文

Prediction of the shear wave velocity

Amoroso SARA

期刊论文

Improvement in growth yield of single-walled carbon nanotubes with narrow chirality distribution by pulse

Bin Xu, Toshiro Kaneko, Toshiaki Kato

期刊论文

Investigation on a cylindrical ultrasonic micromotor

ZHU Hua, CHEN Chao, ZHAO Chunsheng

期刊论文

Machinability of ultrasonic vibration-assisted micro-grinding in biological bone using nanolubricant

期刊论文

A modified pulse charging method for lithium-ion batteries by considering stress evolution, charging

Yanfei ZHAO, Bo LU, Yicheng SONG, Junqian ZHANG

期刊论文